

Institut für Physikalische Chemie

Übungen zur Vorlesung "Physikalische Chemie II" im WS 2015/2016

Prof. Dr. Eckhard Bartsch / M. Werner M.Sc.

— Aufgabenblatt 1 vom 30.10.15 —

Aufgabe 1-1 (L)

Wie groß ist die Kraft, die zwei ${\rm Ca^{2+}}$ -Ionen im Vakuum im Abstand von $0.1\,{\rm nm}$ aufeinander ausüben? Welche elektrische Arbeit wird benötigt, um die beiden Ionen aus unendlichem Abstand auf $0.1\,{\rm nm}$ Abstand zu bringen? Wie lauten die Antworten, wenn diese Betrachtungen in Wasser durchgeführt werden $\epsilon(H_2O)=80$?

Aufgabe 1 - 2(L)

Berechnen Sie die elektrische Energie in J und in kWh, die mindestens erforderlich ist, um $1000\,\mathrm{kg}$ Aluminium durch Reduktion von Al³⁺-Ionen herzustellen. Die zur Elektrolyse benötigte Spannung beträgt $4.50\,\mathrm{V}$.

Aufgabe 1 - 3 (L)

Nach einstündigem Stromdurchgang haben sich an einer Elektrode $15.21\,\mathrm{mg}$ Silber $[M(\mathrm{Ag})=107.9\,\mathrm{gmol}^{-1}]$ abgeschieden. Wie groß war die mittlere Stromstärke?

Aufgabe 1 – 4 (L)

Welche Strommenge (in As) wird transportiert, wenn bei einer konstanten Spannung von $3.21\,\mathrm{V}$ zwei Stunden lang bei einem Gesamtwiderstand von $526\,\Omega$ elektrolysiert wird?

Aufgabe 1 – 5 (L)

Wir betrachten die Änderung der potentiellen Energie bei der Bildung eines NaCl-Moleküls in der Gasphase. Das Na⁺- und das Cl[−]-lon sollen in unendlicher Entfernung keine Wechselwirkung spüren. Beim Berühren Ihrer Hüllen soll die potentielle Energie unendlich groß werden (das bedeutet, dass sich die Elektronenhüllen beim Berühren nicht deformieren können (→ harte Kugeln).

- a) Berechnen Sie die Änderung der potentiellen Energie, wenn Sie die beiden Ionen aus der Unendlichkeit bis zu Ihrem Gleichgewichtsabstand, der $250\,\mathrm{pm}$ beträgt, annähern.
- b) Zeichnen Sie den Verlauf der potentiellen Energie in Abhängigkeit vom Abstand der Ionen.