Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg

12. Übungsblatt zur Vorlesung Physikalische Chemie WS 2009/2010 Prof. Dr. Bartsch

L = leicht, M = mittel, S = schwierig

12.1 M (10 Punkte)

Alle biosynthetisch erzeugten C-Verbindungen enthalten das radioaktive C-Isotop C-14. Der Massenanteil des C-14 am Gesamtkohlenstoff ist

$$\frac{m\left(C-14\right)}{m\left(C_{\text{Ges}}\right)}=1,2\cdot10^{-12}$$

Ein Mensch von 70 kg enthält 2,1 kg C. Die Halbwertszeit von C-14 beträgt 5700 Jahre. Wieviele C-14-Atome zerfallen in einem Menschen an einem Tag?

12.2 L (10 Punkte)

Die Pyrolyse von Dimethylquecksilber verläuft nach einer Reaktion 1. Ordnung. Man hielt eine Substratprobe eine bekannte Zeit bei konstanter Temperatur und bestimmte anschließend das Ausmaß der Zersetzung (in % der Anfangskonzentration $[A]_0$). Leiten Sie aus den folgenden Messwerten die Geschwindigkeitskonstante der Zersetzung bei jeder Temperatur ab und bestimmen Sie die Aktivierungsenergie E_a .

T/°C	Zeit/min.	% Zersetzung
331,7	120	32,4
319,8	330	35,3
305,2	840	33,5

12.3 L (**10** Punkte)

Benutzen Sie die folgenden Daten, um die Aktivierungsenergie für die thermische Zersetzung von Malonsäure zu bestimmen.

		$CH_2(C$	(SOOH)2(§	g) →CH ₃	COOH($g) + CO_2(g)$
T/(°C)	153.6	143.5	136.4	134.2	129.4	125.9
$k/(10^{-3}s^{-1})$	1.083	0.410	0.208	0.169	0.107	0.0763

Hinweis: Tragen Sie lnk gegen 1/T auf.

12.4 L (10 Punkte)

Integrieren Sie die folgende Reaktionsgeschwindigkeitsgleichung.

$$-\frac{d[A]}{dt} = k[A]^{1.5}$$

Geben Sie die Halbwertszeit τ als Funktion der Geschwindigkeitskonstante k an.

12.5 M (10 Punkte)

Die Dimerisierung von Iodatomen mit der Reaktionsgleichung $2I \rightarrow I_2$ verlaufe nach einer Reaktion 2.Ordnung mit der Geschwindigkeitskonstanten $k=3.50 \text{ x } 10^{-4} \text{ L mol}^{-1} \text{ s}^{-1}$. Wie lange dauert es, bis die Konzentration der Iodatome von 0.26 mol L^{-1} auf 0.011 mol L^{-1} gefallen ist?