Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg

11. Übungsblatt zur Vorlesung Physikalische Chemie WS 2009/2010 Prof. Dr. Bartsch

L = leicht, M = mittel, S = schwierig

11.1 L (10 Punkte)

Die Standardgleichgewichtskonstante der Reaktion

$$Br_2(g) \rightarrow 2Br(g)$$

hat bei 2400 K den Wert $K_1 = 38,4$ und und bei 2600 K den Wert $K_2 = 84,7$.

Die Gase verhalten sich ideal. Bestimmen Sie $\Delta_R H^0$; K₃; $\Delta_R G^0$ und $\Delta_R S^0$ für die Reaktion bei 2500 K. $\Delta_R H^0$ sei im betrachteten Temperaturintervall konstant.

11.2 L (10 Punkte)

Wenn man 1 g Thiaminhydrochlorid (= Vitamin B1, $M = 337.3 \text{ gmol}^{-1}$) in 1 mL Wasser löst, findet man pH = 3,0.

Wie groß ist die Gleichgewichtskonstante K der Dissoziation?

11.3 M (20 Punkte)

Wir betrachten die Reaktion: $A \rightarrow 2B$ in wässriger Lösung.

Gegeben: Temperatur T = 25°C; Druck P = 1,01325 bar; Gleichgewichtskonstante K = 10; $\Delta_R H_{298}^{\theta} = 210 k J mol^{-1}$

Berechnen Sie:

a) (5 Punkte)

- 1. $\Delta_R G_{298}^{\theta}$
- 2. $\Delta_R S_{298}^{\theta}$

b) (7 Punkte)

- 3. Nimmt K zu oder ab mit steigender Temperatur?
- 4. Wird Wärme aufgenommen oder abgegeben, wenn die Reaktion von links nach rechts abläuft? Wie viel (pro 1 mol Reaktionsumsatz)?

c) (8 Punkte)

- 5. Wenn die Konzentration von B verdoppelt wird und die Konzentration von A konstant bleibt, nimmt ΔG zu oder ab? Wie viel?
- 6. Läuft die Reaktion im Standardzustand (= Standarddruck und Standardkonzentrationen) bei 298 K spontan ab?
- 7. Wenn die Konzentration von B = 1 M ist, wie groß ist dann die minimale Konzentration von A, damit die Reaktion noch spontan nach rechts abläuft?

11.4 M (10 Punkte)

Wasser dissoziiert nach der Gleichung $H_2O \Leftrightarrow H^+ + OH^-$. Wir haben die folgende Tabelle ($pH = -\lg\{H^+\}$).

a) Überprüfen Sie die folgenden Aussagen und begründen Sie Ihre Antwort: (5 Punkte)

pН	T/°C
7,47	0
7,27	10
7,00	25
6,77	40
6,55	60

- 1) ΔG^0 für Dissoziation von Wasser im Gleichgewicht lässt sich aus diesen Daten nicht berechnen.
- 2) ΔG für die Dissoziation von Wasser ist Null.
- 3) Wasser ist sauer oberhalb von 25°C
- 4) Die Dissoziation von Wasser ist exotherm.
- 5) Da ΔG^0 aus den Freien Standardbildungsenthalpien berechnet werden kann, ist ΔG^0 temperaturunabhängig.

b) (5 Punkte)

Falls möglich, sollen die folgenden Werte berechnet werden:

- 1) Die Gleichgewichtskonstante K der Wasserdissoziation bei 0°C, 25°C und 60°C
- 2) ΔG^0 bei 0°C, 25°C und 60°C