Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg

10. Übungsblatt zur Vorlesung Physikalische Chemie I SS 2013 Prof. Dr. Bartsch

10.1 L

Die freie Standardreaktionsenthalpie der Isomerisierung von cis-2-Penten zu trans-2-Penten bei 400 K beträgt -3,67 kJ mol⁻¹. Bei dieser Temperatur liegen die Isomere als Gase vor und können als ideale Gase behandelt werden.

- a) Ist ein äquimolares Stoffgemisch bei dieser Temperatur im chemischen Gleichgewicht? Begründen Sie Ihre Antwort mit einer Rechnung.
- b) Wie groß ist die Gleichgewichtskonstante?

10.2 L

Distickstofftetroxid, N_2O_4 , kann gemäß $N_2O_4(g) \rightarrow 2$ $NO_2(g)$ dissoziieren. Die beteiligten Gase verhalten sich in guter Näherung ideal und haben bei 298 K folgende molaren Standardentropien S_m^{\ominus} und molaren Standardbildungsenthalpien $\Delta_f H_m^{\ominus}$:

Substanz	$\mathbf{S}_{\mathrm{m}}^{\ominus} \ [\mathrm{J} \ \mathrm{K}^{\text{-1}} \ \mathrm{mol}^{\text{-1}}]$	$\Delta_{\rm f} {\rm H}_{\rm m}^{\ominus} \ [{ m kJ\ mol}^{-1}]$
$NO_2(g)$	240.06	33.18
$N_2O_4(g)$	304.29	9.16

Berechnen Sie die molare Reaktionsenthalpie $\Delta_R H_m^\ominus$, die molare Reaktionsentropie $\Delta_R S_m^\ominus$, die molare freie Reaktionsenthalpie $\Delta_R G_m^\ominus$ und die Gleichgewichtskonstante K für die Dissoziation bei 298 K.

10.3 L

In einem geschlossenen Gefäß befinden sich 0.300 mol $H_2(g)$, 0.400 mol $I_2(g)$ und 0.200 mol HI(g) bei 870 K und 1.00 bar. Wie groß sind die Stoffmengen der Komponenten, wenn sich das Gleichgewicht $H_2(g) + I_2(g) \leftrightarrow 2HI(g)$ eingestellt hat (Gleichgewichtskonstante K = 870)? Hinweis: Füllen Sie zunächst die folgende Wertetabelle aus (ersetzen Sie dabei unbekannte Werte durch x) und benutzen Sie die Daten in der letzen Zeile, um das Massenwirkungsgesetz aufzustellen.

Stoffmenge	$H_2(g)$	$I_2(g)$	HI(g)	gesamt

10.4 L

Die Standardgleichgewichtskonstante der Reaktion:

$$Br_2(g) \Longrightarrow 2 Br(g)$$

hat bei 2400 K den Wert $K^\ominus=38.4$ und bei 2600 K den Wert $K^\ominus=84.7$. Die Gase verhalten sich ideal. Bestimmen Sie $\Delta_r H^\ominus$, K, $\Delta_r G^\ominus$ und $\Delta_r S^\ominus$ für die Reaktion bei 2500 K. $\Delta_r H^\ominus$ sei im betrachteten Temperaturintervall konstant.

10.5 L

Wasser dissoziiert nach der Gleichung $H_2O \rightleftharpoons H^+ + OH^-$. Wir haben die folgende Tabelle $(pH = -\lg\{H^+\})$.

pН	T/°C
7.47	0
7.27	10
7.00	25
6.77	40
6.55	60

- a) Überprüfen Sie die folgenden Aussagen und begründen Sie Ihre Antwort:
 - 1) $\Delta_R G^{\circ}$ für Dissoziation von Wasser im Gleichgewicht lässt sich aus diesen Daten nicht berechnen.
 - 2) $\Delta_R G$ für die Dissoziation von Wasser ist Null.
 - 3) Wasser ist sauer oberhalb von 25°C
 - 4) Die Dissoziation von Wasser ist exotherm.
 - 5) Da $\Delta_R G^{\circ}$ aus den Freien Standardbildungsenthalpien berechnet werden kann, ist $\Delta_R G^{\circ}$ temperaturunabhängig.
- b) Falls möglich, sollen die folgenden Werte berechnet werden:
 - 1) Die Gleichgewichtskonstante K der Wasserdissoziation bei 0° C und 60° C. Hinweis: Für reine flüssige oder reine feste Phasen wird im MWG a = 1 oder x = 1 gesetzt (siehe Prof. Gräbers Skript Kap. 9.5)
 - 2) $\Delta_R G^{\circ}$ bei 0°C und 60°C.

10.6 M

Betrachten wir die Zersetzung von Methan CH₄(g) in die Elemente H₂(g) und C(Graphit,s).

- a) Gegeben seien $\Delta_f H^\ominus$ (CH₄,g) = -74.85 kJ mol⁻¹ und $\Delta_f S^\ominus$ (CH₄,g) = -80.67 JK⁻¹mol⁻¹ jeweils bei 298 K. Berechnen Sie die Gleichgewichtskonstante K bei dieser Temperatur.
- b) Wie groß ist K bei 50° C? $\Delta_f H^{\ominus}$ soll nicht von der Temperatur abhängig sein.
- c) Berechnen Sie den Dissoziationsgrad α von Methan bei 25°C und 0.010 bar.