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Chap. 8 SOLUTIONS OF TIME-INDEPENDENT SCHROEDINGER EQUATIONS

6-2 THE ZERO POTENTIAL

The simplest time-independent Schroedinger equation is the one for the case: V(x) =
const. A particle moving under the influence of such a potential is a firee particle since
the force acting on it is F = —dV(x)/dx = 0. As this is true regardless of the value of
the constant, we do not lose generality by choosing the arbitrary additive constant,
that always arises in the definition of a potential energy, in such a way as to obtain

V(x) =0 (6-1)

We know that in classical mechanics a free particle may be either at rest or moving
with constant momentum p. In either case its total energy E is a constant.
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the time-independent Schroedinger equation, (5-43), setting V(x)
for the potential, the equation is
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The solutions are the eigenfunctions ¥{x), and the wave functions W(x,t) according
to (5-44) arc

F(x,1) = y(x)e™ 0 (6-3)
The cigenvalues E are equal to the total energy of the particle. From the qualitative
discussion of Section 5-7, we know that an acceptable solution of the time-inde-
pendent Schroedinger equation for this nonbinding potential should exist for any
value of E > 0.

Of course, we already know a form of the free particle wave function from our
plausibility argument leading to the Schroedinger equation. That wave function,
(5-23), 1s J

W(x,t) = cos (kx — wt) + i sin (kx — wt)
Rewriting it as a complex exponential, we have
W(x,f) = e®> e (6-4a)

The wave number k and angular frequency w are

p  2mE E
= —_— = _ -4
k 5 7 and w=- (6-4b)
We break the exponential into the product of two factors
P(x,t) = elFreiot = gikxp™iEUN

Then we compare with the general form of the wave function quoted in (6-3)

P(x,t) = Ylxje H"
This comparison makes it apparent that

: 2mE :

Y(x) = e*™  where k = —5 (6-5)

That is, the complex exponential of (6-5) gives the form of a free particle eigenfunction
corresponding to the eigenvalue E.

More specifically, it is a traveling wave free particle eigenfunction because the

corresponding wave function, ¥(x,f) = ¢'® Y, represents a traveling wave. This can




be seen, for example, from the fact that the nodes of the real part of the oscillatory
wave function are located at positions where kx — ot = (n + 1/2)n, with n =0, £1,
+2,.... The reason is that the real part of W(x,t), which is cos (kx — ot), has the
value zero wherever kx — ot = (n + 1/2)n. Thus the nodes occur wherever x =
(n + 1/2)n/k + wt/k and, since these values of x increase with increasing ¢, the nodes
travel in the direction of increasing x. The conclusion is illustrated in the top part of
Figure 6-1 which shows plots of the real part of W(x,t) at successively later times. For
this wave function, the probability density ¥*(x,t)¥(x.t), illustrated in the bottom
of Figure 6-1, conveys no sense of motion.

Intuition suggests that, for the same value of E, there should also be a wave func-
tion representing a wave traveling in the direction of decreasing x. The preceding
argument indicates that this wave function would be written with the sign of kx
reversed, that is

P(x,t) = gt kxmen (6-6)
The corresponding eigenfunction would be
: 2mE
Y(x) =e *  wherek = ;ln (6-7)

It is easy to see that this eigenfunction is also a solution to the time-independent
Schroedinger equation for V(x) = 0. In fact, any arbitrary linear combination of the
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Figure 6-1 Top: The real part, cos (kx — mt), of a complex exponential traveling wave
function, ¥ = e®*— Y for a free particle. With increasing time the nodes move in the di-
rection of increasing x. Bottom: For this wave function a sense of motion is not conveyed by
plotting the probability density W*¥ = ¢~ k¥~ @eikx =0 — { gince it is constant for all
f (and all x). Of course, we cannot plot ¥ itself, as it is complex.
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two eigenfunctions of (6-5) and (6-7), for the same value of the total energy E, is also
a solution to the equation. To prove these statements, we take the linear combination

2mE
h
in which 4 and B are arbitrary constants, and substituie it into the time-independent
Schroedinger equation, (6-2). Since

Y(x) = Ae™™ + Be™™**  where k =

(6-8)

d? ‘ . 2
.I!(zx) — iZkZAerkx + ilkEBe—:kx — _kzl!l(x) _ mZE [[/(JC)
dx h
substitution into the equation yields

(2 v = ey

Since this is obviously satisfied, the linear combination is a valid solution to the time-
independent Schroedinger equation.

2m

The most general form of the solution to an ordinary (i.e., not partial) differential equation
involving a second derivative contains two arbitrary constants. The reason is that obtaining
the solution from such an equation basically amounts to performing two successive integra-
tions to remove the second derivative, and each step yields a constant of integration. Examples
familiar to the student are found in general solutions of Newton’s equation of motion, which
involve two arbitrary constants such as initial position and velocity. Since the linear combina-
tion of (6-8) is a solution containing two arbitrary constants to (6-2), it is its general solution.
The general solution is useful because it allows us to describe any possible eigenfunction as-
sociated with the eigenvalue E. For instance, il we set B = 0, we obtain an eigenfunction for
a wave traveling in the direction of increasing x. If we set A4 = 0, the wave is traveling in
the direction of decreasing x. If we set |A| = [B|, there are two oppositely directed traveling
waves that combine to form a standing wave. Standing wave eigenfunctions will be used in
Section 6-3.

Let us consider now the question of giving physical interpretation to the free par-
ticle cigenfunctions and wave functions. Take first the case of a wave traveling in
the direction of increasing x. The eigenfunction and wave function for this case are

Y(x) = Ae™™ and F(x,t) = Ae'kx—en (6-9)
An obvious guess is that the particle whose motion is described by these functions
is also traveling in the direction of increasing x. To verify this, let us calculate the

expectation value of the momentum, p, for the particle. According to the general ex-
pectation value formula, (5-34)

b= j Wip, W dx

where the operator for momentum is
0

pop = —lhg

Now, for the wave function in question, we have
é . :
Pop¥ = —ih— A7 = —ih(ik)Ae"*™ ") = + kY = +./2mE ¥
ox
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p=+ J Y*\2mEY dx = ++/2mE J WY dx



The integral on the right is the probability density integrated over the entire range
of the x axis. This is just the probability that the particle will be found somewhere,
which must equal one. Therefore, we obtain

p = ++/2mE

This is exactly the momentum that we would expect for a particle moving in the
direction of increasing x with total energy E in a region of zero potential energy.

For the case of a wave traveling in the direction of decreasing x, the eigenfunction
and wave function are

Y(x) = Be and P(x,t) = Be'l “kx7ed (6-10)

When we operate on ‘¥ with p,,, the sign reversal of the kx term in the former leads
to a sign reversal in the result. This, in turn, leads to a momentum expectation value

of
P = —+2mkE

Therefore, we interpret the eigenfunction, and wave function, as describing the mo-
tion of a particle which is moving in the direction of decreasing x with negative
momentum of the magnitude that would be expected in consideration of its energy.

The eigenfunctions and wave functions just considered represent the idealized sit-
uations of a particle moving, in one direction or the other, in a beam of infinite
length. Its x coordinate is completely unknown because the amplitudes of the waves
are the same in all regions of the x axis. That is, the probability densities, for instance

\P*\P — A*e_i(kx—wt)Aei(kx—wt) — A*A

are constants independent of x. Thus the particle is equally likely to be found any-
where, and the uncertainty in its position is Ax = oo. The uncertainty principle states
that in these situations we may know the value of the momentum p of the particle
with complete precision, since

ApAx > h/2

can be satisfied for an uncertainty in its momentum of Ap = 0, if Ax = oc. Perfectly
precise values of p are also indicated by the de Broglie relation, p = Ak, because these
wave functions contain only a single value of the wave number k. Since there is an
infinite amount of time available to measure the energy of a particle traveling through
a beam of infinite length, the energy-time uncertainty principle AEAt > #/2 allows
its energy to be known with complete precision. This agrees with the presence of
a single value of the angular frequency w in these wave functions, because the de
Broglie-Einstein relation E = hiw shows this means a single value of the energy E.

A physical example approximating the idealized situation represented by these
wave functions would be a proton moving in a highly monoenergetic beam emerging
from a cyclotron. Such beams are used to study the scattering of protons by targets
of nuclei inserted in the beam. From the point of view of the target nucleus, and in
terms of distances of the order of its nuclear radius #', the x position of a proton in
the beam may be for all practical purposes completely unknown. That is Ax > r".
Thus the free particle wave functions of (6-9) and (6-10) can give a good approxima-
tion to the description of the beam proton in the region of interest near the nucleus
where the scattering takes place. In other words, near a nucleus the wave function
of (6-9)

¥ — Aei(kx—cot)

can be used to describe a proton in a cyclotron beam directed towards increasing x,
providing the beam is extremely long compared to the dimensions of the nucleus—a
condition which is always satisfied in practice since nuclei are extremely small. The
wave function describes a particle moving with momentum precisely p = ik and
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total energy precisely E = hiw, where these quantities are related by the equation
p = «/2mE appropriate to a particle of mass m moving in a region of zero potential
energy.

There is a difficulty concerning the normalization of the wave functions of (6-9) and (6-10).
In order to have, for instance

o e8]

JT*de: JA*Adsz*A jdle

— o0 — o0
the amplitude A must be zero as {*, dx has an infinite value. The difficulty arises from the
unrealistic statement made by the wave function that the particle can be found with equal
probability anywhere in a beam of infinite length. This is never really true since real beams are
always of finite length. The proton beam is limited on one end by the cyclotron and on the
other end by a laboratory wall. Although the uncertainty Ax in location of a proton is very
much larger than a nuclear radius #, it is not larger than the distance L from the cyclotron to
the wall. That is, even though Ax > 1/, it is also true that Ax < L. This suggests that normal-
ization can be obtained by setting ¥ = 0 outside of the range —L/2 < x < +LJ2, or else by
restricting x to be within that range. In either way we obtain a more realistic description of
the actual physical situation, and we can also normalize the wave function with a nonvanishing
amplitude A. The procedure is called box normalization. Despite the fact that the value of 4
obtained depends on the length L of the box, it always turns out that the final result of calcu-
lation of a measurable quantity is independent of the actual value of L used. Furthermore, we
shall see that it is usually not necessary to carry through box normalization in detail because
quantities of physical interest can be expressed as ratios in which the value of A cancels.
The situation is quite analogous to ones commonly encountered in classical physics. For
instance, in solving a problem of clectrostatics, a straight charged wire of infinite length is
often used to approximate one of finite length in a system where “end effects” are not impor-
tant. This idealization very much simplifies the geometry of the problem, but it leads to the
difficulty that an infinite amount of energy is required to charge the infinitely long wire, unless
its charge density is zero. It is usually possible, however, to get around this difficulty simply
by expressing the quantities that arise in the problem in terms of ratios.

Tt is possible to obtain a much more realistic sense of motion than is seen in either
part of Figure 6-1 by using d large number of wave functions of the form of (6-9)
to generate a group of traveling waves. Figure 6-2 shows the probability density
W*Y for a particularly simple group, its motion in the direction of increasing x, and
the ever increasing width of the group. At any instant the location of the group can
be well characterized by the expectation value X, calculated from the probability
density. The constant velocity of the group, dx/dt, equals the constant velocity of
the free particle, v = p/m = /2mE /m = J2E/m, in agreement with the conclusions of
Chapter 3. The spreading of the group is a characteristic property of waves that is
intimately related to the uncertainty principle, as discussed in that chapter. Of course
the behavior of the group wave function is casier to interpret than the behavior of
a purely sinusoidal wave function, such as that of (6-9), because the corresponding
probability density is closer to the description of particle motion we are familiar with
from classical mechanics. However the mathematics required to describe the group,
and treat its behavior analytically, is much more complicated. The reason is that a
group must necessarily involve a distribution of wave numbers k, and therefore a
distribution of energies E = h2k?/2m. In order to compose even as simple a group as '
the one shown in the figure, a very large number of sinusoidal waves, with very small
differences in wave numbers or energies, must be summed in the manner described in
Chapter 3. These mathematical complications far outweigh any advantages involved
in the ease of interpretation. Consequently, groups are rarely used in practical quan-
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Figure 6-2 The probability density ¥*¥ for a group traveling wave function of a free
particle. With increasing time the group moves in the direction of increasing x, and also
spreads.

tum mechanical calculations, and most such calculations are performed with wave
functions involving a single wave number and energy.

Our consideration of the motion of the group in Figure 6-2 leads us to discuss
briefly a related case of great interest. If, instead of having the constant value zero,
the potential function ¥(x) changes so slowly that its value is almost constant over
a distance of the order of the de Broglic wavelength of the particle, the group wave
function will still propagate in a manner similar to that illustrated in the figure, but
the velocity of the group will now also change slowly. Calculations, starting from
the Schroedinger equation, lead to an expression relating the change in the velocity,
dx/dt, of the group to the change in the potential, ¥(x). The expression is

d(dx\ d [ V(x)
ﬁ(%)‘&(’??)

or
dV{x)
d*%  dx _F(x)
i m  om

where the bars denote expectation values and F(x) is the force corresponding to the
potential ¥ (x). It is unfortunate that the calculations are too complicated to repro-
duce here. They are very significant because they show that the acceleration of the
average location of the particle associated with the group wave function equals the
average force acting on the particle, divided by its mass. That is, Schroedinger’s
equation leads to the result that Newton’s law of motion is obeyed, on the average,
by a particle of a microscopic system. The fluctuations from its average behavior
reflect the uncertainty principle, and they are very important in the microscopic
limit. But these fluctuations become negligible in the macroscopic limit where the
uncertainty principle is of no consequence, and it is no longer necessary to speak of
averages in talking about locations in that limit. Also, in the macroscopic limit any
realistic potential changes by only a small amount in a distance as short as a de
Broglic wavelength. So it is also not necessary, in that limit, to speak of averages
when discussing potentials. Thus, in the macroscopic limit we can ignore the bars

AVILNILOd OHdZ 9HL ¢-9 995 €81



Ch.

184

ATIONS

representing expectation values, or averages, in the equations just displayed. We then
conclude that Newton’s law of motion can be derived Jrom the Schroedinger equation

in the classical limit of macroscopic systems. Newton’s law of motion is a special case of
Schroedinger’s equation. \

Beispiel fur eine Beschreibung eines Freien Teilchens durch eine
Wellengruppe: Reflexion eines Teilchens mit E <V, an einer
Barriere unendlicher Ausdehnung; vgl. Graber-Skript S. 187 ff.

Aus: Robert Eisberg, Robert Resnick, ,,Quantum Physics of
Atoms, Molecules, Solids, Nuclei and Particles, 2nd Ed., Wiley,
New York, 1985
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Figure 6-5 The relation between total and
potential energies for a particle incident upon
Vi) =0 . a potential step with total energy less than
0 the height of the step.

The wave function corresponding to the eigenfunction is
Aeikixg=iEth o Bo=ikix,=iEtlh _ gitkix=Etfh) 4 Bi(—kix—Etfh) . < ()

De—kzxe—iﬂr}ﬁ x>0 (6'25)

Y(x,t) =
Consider the region x < 0. The first term in the wave function for this region is a trav-
eling wave propagating in the direction of increasing x. This term describes a particle
moving in the direction of increasing x. The second term in the wave function for x <
0 is a traveling wave propagating in the direction of decreasing x, and it describes
a particle moving in that direction. This information, plus the classical predictions
described earlier, suggests that we should associate the first term with the incidence
of the particle on the potential step and the second term with the reflection of the
particle from the step.



it is easy to show that the eigenfunction can be expressed as

D cos kyx — D —= sin k,x x<0
Y(x) = ks (6-29)

De F2* x>0

If we generate the wave function by multiplying y(x) by ¢ """, we see immediately
that we actually have a standing wave because the locations of the nodes do not
change in time. In this problem the incident and reflected traveling waves for x <0
combine to form a standing wave because they are of equal intensity. Figure 6-6
depicts this schematically. ‘-
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Figure 6-6 lllustrating schematically the combination of an incident and a reflected wave of
equal intensities to form a standing wave. The wave function is reflected from a potential step
at x = 0. Note that the nodes of the traveling waves move to the right or ieft, but those of the
standing wave are stationary.

In the top part of Figure 6-7 we illustrate the wave function by plotting the eigen-
function, (6-29), which is a real function of x if we take D real. The wave function
can be thought of as oscillating in time according to ¢~/ with an amplitude whose
space dependence is given by (x). Here we find a feature which is in sharp contrast
to the classical predictions. Although in the region x > 0 the probability density

PHEY = D¥e h‘,x +:El .'r\))e—kzte—lErﬂr _ D:E:DE—Z’C:I [6_30)

illustrated in the bottom of Figure 6-7, decreases rapidly with increasing x, there is
a finite probability of finding the particle in the region x > 0. In classical mechanics
it would be absolutely impossible to find the particle in the region x > 0 because
there the total energy is less than the potential energy, so the kinetic energy p*/2m
is negative and the momentum p is imaginary. This phenomenon, called penetration

of the classically excluded region, is one of the more striking predictions of quantum
mechanics.
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Figure 6-7 Top: The eigenfunction y/(x) for a particle incident upon a potential step at x=
0, with total energy less than the height of the step. Note the penetration of the eigenfunc-
tion into the classically excluded region x > 0. Bottom: The probability density ¥*¥ —
Uy = y* corresponding to this eigenfunction. The spacing between the peaks of W2 is

twice as close as the spacing between the peaks of .

We shall discuss later certain experiments which confirm this prediction, but here
we should like to make several points about it. One is that penetration does not
mean that the particle is stored in the classically excluded region. Indeed, we have
scen that the incident particle is definitely reflected from the step.

Another point is that penetration of the excluded region, which obeys (6-30), is not
in conflict with the experiments of classical mechanics. It is apparent from the equa-
tion that the probability of finding the particle with a coordinate x > 0 is only
appreciable in a region starting at x = 0 and extending in a penetration distance Ax,
which equals 1/k,. The reason is that e~ **** goes very rapidly to zero when x is very
much larger than 1/k,. Since k, = \/2m(V, — E) /h, we have

B h

2m(Vy — E)
In the classical limit, the product of m and (V, — E) is so large, compared to #2, that
Ax 1s immeasurably small.

Ax
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Figure 6-8 shows the probability density for a wave function in the form of a group,
for the problem of a particle incident in the direction of increasing x upon a potential
step with an average value of the total energy less than the step height. The wave func-
tion can be obtained by summing, over the total energy E, a very large number of
wave functions of the form we have obtained in (6-25). It can also be obtained by a
direct numerical solution of the Schroedinger equation. Either way involves a large
amount of work on a high-speed computer, as can be guessed from the complications
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Figure 6-8 A potential step, and the probability density ¥*¥ for a group wave function
describing a particle incident on the step with total energy less than the step height. As time
evolves, the group moves up to the step, penetrates slightly into the classically excluded
region, and then is completely reflected from the step. The complications of the mathe-
matical treatment using a group are indicated by the complications of its structure during
reflection.

indicated in the figure. The results of the calculations certainly convey a realistic sense
of the particle motion; but note that these results show, again, that the particle associ-
ated with the wave function is reflected from the step with probability one, and that
there is some penetration of the classically excluded region. The fact that we have
been able to learn these basic results from simple calculations, involving only the
wave function of (6-25) which contains a single value of E, is an example of the fact
that it is generally not necessary in quantum mechanics to use wave functions in the
form of groups. Of course, we must be willing to learn how to interpret the simpie
wave functions.



