p(r) for platelet-like particles

Transition from r^2 behaviour to ~ r behaviour difficult to localize

 \rightarrow Definition of a new function: f(r) = p(r)/r

- --- linear initial region
- inflection indicates thickness Dt of platelet
- $B = f(0)_{extrapol} = (1/2)(\Delta \rho_s)^2 A d^2$ $\Rightarrow info about basal area A$ (requires data on absolute scale!)

f(r) functions of other elementary bodies

No lamellar character for sphere and cigar

No distinction possible between bread loaf and prism (circular and rectangular base plane) in real experiments; only average thickness can be read off

Hollow and Inhomogeneous Particles: Hollow Spheres

Thin hollow sphere ~ flat, but bent particle →p(r) shares some features with lamellar objects

p(r) ~ r²

- ~ r for $d < r \le D_a 2d = 2R_i$
- $\textrm{~~full sphere} \quad for \ r \geq D_a \textrm{-}d$

 $D_a = 400$ P(r) 5 Vollingel D/d=2 4 r= D-d CD/d=2.5 3 2 D/d =5 vr 1001

200

D/d = 10

300

۰r

400

1

0

100

Renormalized PDDF

f(r) = p(r)/r

exposes the linear region of p(r)

$$d \rightarrow \leftarrow D_a$$

- $p(r) \sim r^2$ for $r \leq d = R_a R_i$
 - ~ r for $d < r \le D_a 2d = 2R_i$
 - ~ full sphere for $r \ge D_a$ -d

Hollow and Inhomogeneous Particles: Inhomogeneous Spheres

Multilayer Spheres:

Occurrence of minima signals signals existence of layers of alternating sign of difference scattering density $(\Delta \rho_s(r))^2$

full sphere

multi layer spheres

Inhomogeneous Rods – long circular cylinders

i) density profile along cross section

 linearly decreasing region is retained – only slope is changing

 $p(r) = (1/2\pi) (\Delta \rho_s(r))^2 A^2 (L-r)$

- inhom. cylinder: negative regions in p(r)
 → distances connecting regions with positive and negative contrast (coreshell) dominate
- Δρ_s(r) = 0 → linear region coincides with abszissa; oscillations corresponding to internal density fluctuations remain
- differences in p(r) most clearly for r < d

- a) homogeneous cylinder
- b) hollow cylinder
- c) inhomogeneous cylinder

Inhomogeneous Rods – long circular cylinders

ii) density profile along cylinder axis

- oscillations in p(r) with period d of the "double layer" (2x20 = 40)
- cylinder = micro crystallite; double layer = unit cell
 → reflexes in I(q): position ↔ distance of unit cells

$$(q = 2\pi/40 \approx 0.16)$$

width \leftrightarrow number of unit cells

• Guinier region of I(q) identical \leftrightarrow identical outer shape

Inhomogeneous platelets

(i) Density profile perpendicular to base plane

comparison of a homogeneous (---) and an inhomogeneous (---) lamella with dimensions 200x200x30 Å; $\Delta \rho_{\text{inhomog}}$ is a three-step function (3x10 Å) with $\Delta \rho = +1, -1, +1$

Differences only visible for r < d

(ii) Density profile parallel to base plane

p(r) of this chess board like structure shows oscillations for all r

Study of particle inhomogeneities via contrast variation

Contrast:

rast:
$$\Delta \rho_s(r, \rho_{s,m}) = \rho_{s,p}(r) - \rho_{s,m}$$

Average contrast:

trast:
$$\left< \Delta \rho_s \right> = \frac{1}{V_p} \int \Delta \rho_s(r, \rho_{s,m}) dV_p$$

Decomposition of particle contrast in its average and fluctuations around this average:

$$\Delta \rho_{s}(r, \rho_{s,m}) = \langle \Delta \rho_{s} \rangle + \delta(\Delta \rho_{s}(r))$$

 \Rightarrow Scattering intensity contains three contributions:

$$I(q) = I_{\delta}(q) + \left\langle \Delta \rho_{s} \right\rangle I_{c\delta}(q) + \left\langle \Delta \rho_{s} \right\rangle^{2} I_{c}(q)$$

Fluctuation contribution from internal inhomogeneities

Cross term

Average contrast contribution from particle shape ("envelope") Similar contributions $\gamma(r)$ and p(r):

$$p(r) = p_{\delta}(r) + \left\langle \Delta \rho_{s} \right\rangle p_{c\delta}(r) + \left\langle \Delta \rho_{s} \right\rangle^{2} p_{c}(r)$$

Separation of contributions:

Measurements at $n \ge 3$ contrasts and solution of the set of n linear equations for each q-value (r-value)

Contrast variation of R_a:

$$R_g^2 = R_c^2 - \frac{\alpha}{\left\langle \Delta \rho_s \right\rangle} - \frac{\beta}{\left\langle \Delta \rho_s \right\rangle^2}$$

$$\alpha = V^{-1} \int \delta(\Delta \rho_s(\vec{r})) r^2 d\vec{r}$$

$$\beta = V^{-2} \iint \delta(\Delta \rho_s(\vec{r}_1)) \,\delta(\Delta \rho_s(\vec{r}_2)) \,\vec{r}_1 \,\vec{r}_2 \,d\vec{r}_1 \,d\vec{r}_2$$

- α: describes arrangement of regions of higher and lower scattering density with respect to "center of mass" of envelope
- β: measure of separation of "center of mass" of envelope and of inhomogeneities

Examples:

Figure 4.10. Radius of gyration of myoglobin as a function of contrast (after Ibel and Stuhrmann, 1975). Open circles denote X-ray data and shaded circles, neutron data. (1), (2) straight lines with slope α calculated near $(d\rho)^{-1} = 0$; (3) calculated from the myoglobin model (neutrons).

Figure 4.12. Radius of gyration as a function of contrast for the 50 S ribosomal subparticle (after Stuhrmann *et al.*, 1976a). Open and shaded circles correspond to measurements in different solvents.

Contrast variation of I(0): $I(0) = \langle \Delta \rho_s \rangle^2 I_c(0) = \langle \Delta \rho_s \rangle^2 V_p^2$

 $\sqrt{I(0)} \operatorname{vs} \langle \Delta \rho_s \rangle \implies \text{Straight line with slope V}_p$

I(0) = 0 for $\langle \rho_{s,p} \rangle = \rho_{s,m}$ (contrast match condition)

Figure 4.9. Zero-angle scattering of myoglobin solutions (after Ibel and Stuhrmann, 1975): (1) neutron scattering; (2) X-ray scattering (water/glycerol mixtures); (3) X-ray scattering (sugar solutions).

Indirect Fourier Transformation Method

Fig. 1. Schematic representation of the correlation between a particle and its observable experimental scattering data.