Rayleighstreuung an Flüssigkeiten - Flukuationstheorie

Annahme unabhängiger Streuzentren bricht bei Flüssigkeiten zusammen:

- \rightarrow Hohe Streuzentrendichte \Rightarrow Interferenzeffekte
- \rightarrow im Falle komplette zufälliger Anordung der Moleküle
 - \Rightarrow vollständige Auslöschung des Streulichts

Aber: Flüssigkeiten streuen Licht!

Erklärung: Flüssigkeit als Kontinuum. Streuung erfolgt nicht an einzelnen Molekülen, sondern an kleinen Regionen mit erhöhter bzw. verringerter Dichte, die durch thermische Fluktuationen entstehen

 \Rightarrow Streuung an Dichtefluktuationen

Rayleighstreuung an verdünnten Lösungen von Makromolekülen

Zwei Ursprünge für Lichtstreuung:

- Dichtefluktuationen des Lösungsmittels
 →Abziehen der Streuung des reinen Lösungsmittels ("Blank"-Korrektur)
- 2) Fluktuationen in der Konzentration des gelösten Stoffes (Konzentrationsfluktuationen)

Jedes dV fungiert als streuender induzierter Dipol Es gelten die Gesetze der phänomenolog. Thermodynamik in dV Die Anzahldichte ρ_N schwankt leicht von Teilvolumen zu Teilvolumen

- $\leftrightarrow \quad dV <\!\!< \lambda_0^{-3} <\!\!< V$
- $\leftrightarrow \quad \text{Teilchenzahl in dV: } N >> 1$
- $\leftrightarrow \quad \text{Anzahldichte in dV: } \rho_N = N/dV$

Streuintensität I_s für V/dV solcher Dipole im Streuvolumen im Abstand $r >> \lambda_0$ unter dem Winkel θ :

$$I_{s} = \frac{V}{dV} \left(I_{0} \frac{8\pi^{4} \alpha^{2}}{\lambda_{0}^{4} r^{2}} \left(1 + \cos^{2} \theta \right) \right) \qquad 4\pi\varepsilon_{0} = 1$$

Fluktuationen der Anzahldichte führen zu Fluktuationen von α

- \rightarrow räumliche oder zeitliche Mittelung
- → Ursache der Lichtstreuung ist die Brownsche Molekularbewegung

$$\alpha = \overline{\alpha} + \delta \alpha$$

 $\overline{\alpha}$ = zeitliches Mittel – identisch für alle Teilvolumina $\delta \alpha$ = momentane Abweichung (Fluktuation) vom Mittelwert – von dV zu dV verschieden

Momentane Streuintensität

$$I_{s} \propto \frac{\alpha^{2}}{\alpha^{2}} + 2\overline{\alpha}(\delta\alpha) + (\delta\alpha)^{2}$$

<u>Mittelung über alle Teilvolumina (= Ensemblemittel <...>) :</u>

$$\Rightarrow \left< \delta \alpha \right> = 0$$
$$\Rightarrow \left< I_{2\bar{\alpha}(\delta \alpha)} \right> = 0$$

$$\Rightarrow \langle I_s \rangle = \langle I_{(\delta\alpha)^2} \rangle = \frac{V}{dV} \left(I_0 \frac{8\pi^4 \left\langle \left(\delta\alpha\right)^2 \right\rangle}{\lambda_0^4} \right) \frac{\left(1 + \cos^2\theta\right)}{r^2}$$

<u>Thermodynamische Berechnung von (δα)</u>

Thermodyn. Eigenschaften eines Zwei-Komponenten-Systems sind durch T, P und c_2 (2 = gelöster Stoff) eindeutig festgelegt.

Fluktuationen $\delta \alpha \leftrightarrow$ Fluktuationen δT , δP , δc_2

$$\frac{\delta \alpha}{\partial T} = \left(\frac{\partial \alpha}{\partial T}\right)_{P,c_2} \delta T + \left(\frac{\partial \alpha}{\partial P}\right)_{T,c_2} \delta P + \left(\frac{\partial \alpha}{\partial c_2}\right)_{P,T} \delta c_2$$

Beiträge von δT und δP zur Streuung sind für Lösung und Lösungsmittel nahezu identisch

 \Rightarrow nur Exzessstreuung $I_{s,ex} = I_{s,L\"osung} - I_{s,L\"osungsmittel}$ von Interesse:

$$I_{s,ex} \propto \left\langle \left(\delta \alpha_{L\ddot{o}sung} - \delta \alpha_{L\ddot{o}semittel} \right)^2 \right\rangle \approx \left(\frac{\partial \alpha}{\partial c_2} \right)_{P,T}^2 \left\langle \delta c_2^2 \right\rangle$$

"Pseudogas" -Ansatz zur Berechnung von α des Teilvolumens

Teilvolumina der Lösung \leftrightarrow "Pseudogas"-Teilchen mit Volumen dV, Teilchenzahldichte $\rho_N = 1/dV$ und Polarisierbarkeit α

Für Gasteilchen gilt:

$$\alpha = \frac{3M\varepsilon_0}{N_A\rho_m} \frac{\varepsilon - 1}{\varepsilon + 2} = \frac{3(4\pi\varepsilon_0)}{\rho_N} \frac{n^2 - 1}{n^2 + 2}$$

n, ρ_m und M = Brechungsindex, Massendichte und Molmasse der "Pseudogas"-Teilchen

$$\alpha \approx \frac{3}{\rho_N 4\pi 3} (n^2 - 1) = \frac{dV}{4\pi} (n^2 - 1)$$

für n→1 und $4πε_0 = 1$ $ρ_N = 1/dV$

$$\left(\frac{\partial \alpha}{\partial c_2}\right)_{P,T} = \frac{dV n}{2\pi} \left(\frac{\partial n}{\partial c_2}\right)_{P,T} \quad \text{Brechungsi}$$

Brechungsindexinkrement

$$\langle I_s \rangle = \langle I_{(\delta \alpha)^2} \rangle = \frac{V}{dV} \left(I_0 \frac{8\pi^4 \left\langle \left(\delta \alpha\right)^2 \right\rangle}{\lambda_0^4} \right) \frac{\left(1 + \cos^2 \theta\right)}{r^2}$$

$$\Rightarrow \langle I_s \rangle = \frac{V}{dV} \left(I_0 \frac{8\pi^4}{\lambda_0^4} \right) \left(\frac{(dV)^2 n^2}{4\pi^2} \right) \left(\frac{\partial n}{\partial c_2} \right)_{P,T}^2 \left\langle (\delta c_2)^2 \right\rangle \frac{(1 + \cos^2 \theta)}{r^2}$$

$$\Rightarrow \langle I_s \rangle = I_0 \frac{V \, dV \, 2\pi^2 \, n^2}{\lambda_0^4} \left(\frac{\partial n}{\partial c_2}\right)_{P,T}^2 \left\langle \left(\delta c_2\right)^2 \right\rangle \frac{\left(1 + \cos^2 \theta\right)}{r^2}$$

Thermodynamische Berechnung der Konzentrationsfluktuationen $\langle (\delta c_2)^2 \rangle$

Momentane Konzentration \tilde{c}_2 im Teilvolumen dV:

$$\begin{split} \tilde{c}_2 &= c_2 + \delta c_2 \\ \left< \tilde{c}_2 \right> &= c_2 \implies \left< \delta c_2 \right> = 0 \\ \text{Aber:} \quad \left< \left(\delta c_2 \right)^2 \right> \neq 0 \text{ , sonst existierten keine Konz.-Fluktuationen} \end{split}$$

Konzentrationsfluktuationen \rightarrow Fluktuationen der freien Enthalpie G:

$$G = \langle G \rangle + \delta G \qquad \langle \delta G \rangle = 0$$

Sehr kleine Fluktuationen \rightarrow Taylorentwicklung von G nach c₂

$$\Rightarrow \delta G = G - \langle G \rangle = \frac{1}{2} \left(\frac{\partial^2 G}{\partial \tilde{c}_2^2} \right)_{P,T} \left(\delta c_2 \right)^2$$

Berechnung von $\langle (\delta c_2)^2 \rangle$ über Boltzmann-Statistik: $w(\delta c_2) \propto e^{-\delta G/k_B T}$

$$\left\langle \left(\delta c_{2}\right)^{2} \right\rangle = \frac{\int_{0}^{\infty} (\delta c_{2})^{2} w(\delta c_{2}) d(\delta c_{2})}{\int_{0}^{\infty} w(\delta c_{2}) d(\delta c_{2})} = \frac{k_{B}T}{\left(\frac{\partial^{2} G}{\partial \tilde{c}_{2}}^{2}\right)_{P,T}}$$

Gesucht:
$$\left(\partial^2 G / \partial \tilde{c}_2^2\right)_{P,T}$$

Fluktuationen von G \leftrightarrow Fluktuationen der Molzahlen n₁ und n₂

 $\delta G = \mu_1 \delta n_1 + \mu_2 \delta n_2$

Diese Molzahlfluktuationen sind nicht unabhängig voneinander Es gilt:

$$\delta(dV) = \overline{V_1} \delta n_1 + \overline{V_2} \delta n_2 = 0$$

$$\overline{V_1}, \overline{V_2} \quad \text{Partielle molare Volumina}$$

Ersetze $\delta(dV)$ in 1 durch 2

$$\Rightarrow \delta G = \left[-\left(\frac{\overline{V_2}}{\overline{V_1}}\right) \mu_1 + \mu_2 \right] \delta n_2$$

Für Molzahl n₂ gilt:

 $\frac{n_2}{dV} = \frac{c_2}{M_2} \longleftarrow \text{Massenkonz. [kg m^3]}$ Molmasse [kg mol]

$$\Rightarrow \delta n_2 = \left(\frac{dV}{M_2} \right) \quad \delta c_2$$

$$\left(\frac{\partial G}{\partial c_2} \right)_{P,T} = \frac{dV}{M_2} \left[\mu_2 - \frac{\overline{V_2}}{\overline{V_1}} \quad \mu_1 \right]$$

$$\left(\frac{\partial^2 G}{\partial c_2^2} \right)_{P,T} = \frac{dV}{M_2} \left[\left(\frac{\partial \mu_2}{\partial c_2} \right)_{P,T} - \frac{\overline{V_2}}{\overline{V_1}} \left(\frac{\partial \mu_1}{\partial c_2} \right)_{P,T} \right]$$

Gibbs-Duhem-Gleichung: $n_1 \delta \mu_1 + n_2 \delta \mu_2 = 0$

$$\Rightarrow \left(\frac{\partial^2 G}{\partial c_2^2}\right)_{P,T} = -\frac{dV}{M_2} \left[\frac{n_1}{n_2} \left(\frac{\partial \mu_1}{\partial c_2}\right)_{P,T} + \frac{\overline{V_2}}{\overline{V_1}} \left(\frac{\partial \mu_1}{\partial c_2}\right)_{P,T}\right] =$$

$$= -\frac{dV}{M_2} \left[\frac{n_1}{n_2} + \frac{\overline{V_2}}{\overline{V_1}} \right] \left(\frac{\partial \mu_1}{\partial c_2} \right)_{P,T} = -\frac{dV}{M_2} \left[\frac{n_1 \overline{V_1} + n_2 \overline{V_2}}{n_2 \overline{V_1}} \right] \left(\frac{\partial \mu_1}{\partial c_2} \right)_{P,T}$$

Mit
$$c_2 = \frac{n_2 M_2}{n_1 \overline{V_1} + n_2 \overline{V_2}}$$

$$\Rightarrow \left(\frac{\partial^2 G}{\partial c_2^2}\right)_{P,T} = -\frac{dV n_2 M_2}{M_2 c_2 n_2 \overline{V_1}} \left(\frac{\partial \mu_1}{\partial c_2}\right)_{P,T} = -\frac{dV}{c_2} \frac{\partial \mu_1}{\overline{V_1}} \left(\frac{\partial \mu_1}{\partial c_2}\right)_{P,T}$$

$$\Rightarrow \left\langle \left(\delta c_2 \right)^2 \right\rangle = \frac{k_B T}{\left(\frac{\partial^2 G}{\partial c_2^2} \right)_{P,T}} = -\frac{k_B T c_2 \overline{V_1}}{dV \left(\frac{\partial \mu_1}{\partial c_2} \right)_{P,T}}$$

$$\left\langle I_{s}\right\rangle = I_{0} \frac{V \, dV \, 2\pi^{2} \, n^{2}}{\lambda_{0}^{4}} \left(\frac{\partial n}{\partial c_{2}}\right)_{P,T}^{2} \left\langle \left(\delta c_{2}\right)^{2} \right\rangle \frac{\left(1 + \cos^{2} \theta\right)}{r^{2}}$$

$$\Rightarrow \left\langle I_{s} \right\rangle = I_{0} \frac{V \, dV \, 2\pi^{2} \, n^{2}}{\lambda_{0}^{4}} \left(\frac{\partial n}{\partial c_{2}} \right)^{2} \frac{k_{B} T \, c_{2} \overline{V_{1}}}{dV \left(-\partial \mu_{1} / \partial c_{2} \right)_{P,T}} \frac{\left(1 + \cos^{2} \theta \right)}{r^{2}}$$

Osmotischer Druck $\Pi \leftrightarrow \left(\partial \mu_1 / \partial c_2\right)_{P,T}$

Ansatz: Lösung im Gleichgewicht mit reinem Lösungsmittel $\mu'_1 = \mu''_1$

 $\mu_1'' = \mu_1^o \leftarrow$ Chemisches Potential des reinen Lösungsmittels

$$\mu_{1}' = \mu_{1}^{o} + RT \ln a_{1} + \int_{P_{1}^{o}}^{P_{1}^{o} + \Pi} \overline{V_{1}} dP \implies RT \ln a_{1} = -\int_{P_{1}^{0}}^{P_{1}^{o} + \Pi} \overline{V_{1}} dP = -\overline{V_{1}} \Pi$$

Für chem. Potential einer Lösung ohne Kontakt mit reinem Lösungsmittel

 $\mu_{1} = \mu_{1}' = \mu_{1}^{o} + RT \ln a_{1}$ $\Rightarrow \mu_{1} = \mu_{1}^{o} - \Pi \overline{V_{1}} \qquad \Rightarrow -\left(\frac{\partial \mu_{1}}{\partial c_{2}}\right)_{P,T} = \overline{V_{1}} \left(\frac{\partial \Pi}{\partial c_{2}}\right)_{P,T}$

$$\left\langle I_{s} \right\rangle = I_{0} \frac{V 2\pi^{2} n^{2}}{\lambda_{0}^{4}} \left(\frac{\partial n}{\partial c_{2}} \right)^{2} \frac{k_{B}T c_{2}\overline{V_{1}}}{\left(-\partial \mu_{1}/\partial c_{2} \right)_{P,T}} \frac{\left(1 + \cos^{2} \theta \right)}{r^{2}}$$

$$\Rightarrow \left\langle I_{s} \right\rangle = I_{0} \frac{V 2\pi^{2} n^{2}}{\lambda_{0}^{4}} \left(\frac{\partial n}{\partial c_{2}} \right)^{2} \frac{k_{B}T c_{2}\overline{V_{1}}}{\overline{V_{1}} \left(\partial \Pi/\partial c_{2} \right)_{P,T}} \frac{\left(1 + \cos^{2} \theta \right)}{r^{2}}$$

Virialentwicklung des osmotischen Drucks:

$$\Pi = RT\left(\frac{c_2}{M_2} + A_2c_2^2 + A_3c_2^3 + \dots\right)$$

$$\Rightarrow \left(\frac{\partial \Pi}{\partial c_2}\right)_{P,T} = RT\left(\frac{1}{M_2} + 2A_2c_2 + 3A_3c_2^2 + \dots\right)$$

$$\left\langle I_{s}\right\rangle = I_{0} \frac{V 2\pi^{2} n^{2}}{\lambda_{0}^{4}} \left(\frac{\partial n}{\partial c_{2}}\right)^{2} \frac{k_{B}T c_{2}}{\left(\frac{\partial \Pi}{\partial c_{2}}\right)_{P,T}} \frac{\left(1 + \cos^{2}\theta\right)}{r^{2}}$$

$$\Rightarrow \frac{\left\langle I_{s,ex}\right\rangle}{I_0} = \frac{V \, 2\pi^2 \, n^2}{\lambda_0^4} \left(\frac{\partial n}{\partial c_2}\right)^2 \frac{k_B T \, c_2}{RT \left(\frac{1}{M_2} + 2A_2 c_2 + ...\right)} \frac{\left(1 + \cos^2 \theta\right)}{r^2} =$$

$$\underset{\mathbf{R}=\mathbf{k}_{\mathbf{B}}\mathbf{N}_{\mathbf{A}}}{\mathbf{n} \approx \mathbf{n}_{o}} = \frac{V 2\pi^{2} n_{o}^{2}}{\lambda_{0}^{4} N_{A}} \left(\frac{\partial n}{\partial c_{2}}\right)^{2} \frac{c_{2}}{\left(1/M_{2}+2A_{2}c_{2}+...\right)} \frac{\left(1+\cos^{2}\theta\right)}{r^{2}}$$

Mit der Definition des Rayleigh-Verhältnis R_{θ} :

$$R_{\theta} \equiv \left(\frac{I_{s,ex}r^2}{I_0V(1+\cos^2\theta)}\right)$$

und des Kontrastfaktors K:

$$K \equiv 2\pi^2 n_o^2 \left(\frac{\partial n}{\partial c_2} \right)_{P,T}^2 / N_A \lambda_o^4$$

erhält man den bekannten Ausdruck für die Lichtstreuung an Polymerlösungen:

$$\frac{Kc_2}{R_{\theta}} = \frac{1}{M_2} + 2A_2c_2 + 3A_3c_2^2 + \dots$$

Turbidität τ und Molekulargewicht M

 $I_{\Sigma s} = \sum_{\theta} I_{s}(\theta)$ Summation der Streuintensität über alle Streuwinkel

$$\tau = \frac{I_{\Sigma s}}{I_0} = \int_0^{\pi} \left(\frac{I_s(\theta)}{I_0}\right) 2\pi r^2 \sin \phi_x \, d\phi_x$$

$$\tau = \frac{16\pi Kc_2}{3(1/M + 2A_2c_2)} = \frac{Hc_2}{(1/M + 2A_2c_2)}$$

Figure 5.8 Definition of an element of area required for the summation over all angles of the intensity of scattered light.

Aufsummation von Kreisringen $(2\pi r \cdot \sin \phi_x) \cdot (r d\phi_x)$

$$\frac{Hc_2}{\tau} = \frac{1}{M} + 2A_2c_2 + \dots = \frac{Kc_2}{R_{\theta}}$$

$$R_{\theta} = \frac{K}{H}\tau = \frac{3}{16\pi}\tau$$

Debyesche Streutheorie – Streuung an großen Molekülen

$$\frac{\lambda}{20} \le R_p \le \lambda$$

Zwei Beobachterpositionen: $A \leftrightarrow \theta_1$; $B \leftrightarrow \theta_2$ Gleiche Distanz Molekülschwerpunkt S \rightarrow A,B

 $\overline{OP_jB} > \overline{OP_iB} \Rightarrow$ Phasendifferenz φ_B

$\theta_1 < \theta_2$	\Rightarrow	$\phi_A < \phi_B$	Destruktive Inter-
$\theta = 0$	\Rightarrow	$\phi = 0$	ferenz nimmt mit
			θzu

 $P(q) = \frac{I(\theta)}{I(0)} = \frac{Streuintensität \ des \ Teilchens \ bei \ \theta}{Streuintensität \ des \ Teilchens \ ohne \ Interferenz}$

Beispiel für Zimm-Plot

Abb. 4.49: Zimm-Plot für Polystyrol NBS706 ($M_w = 2.8 \cdot 10^5 \text{g/mol}$) in Toluol bei 25 °C und $\lambda = 436$ nm $A_2 = 3.8 \cdot 10^{-4}$ cm³ mol g⁻¹; $A_3 = 18.4 \cdot 10^{-6}$ cm⁶ mol² g⁻²; $\langle R^2 \rangle_z = 51.8$ nm; Dimension von q^2 : 1/cm²; Dimension von c: g/cm³.

Zusammenhang zwischen Trägheitsradius und Molekülstruktur

Modell	R_g^2	Bedeutung der Symbole
Harte Kugel Hohlkugel	$\frac{(3/5) R^2}{(3/5)(R_a^5 - R_i^5)/(R_a^3 - R_i^3)}$	R = Radius der Kugel R_{a} = äußerer Radius R_{i} = innerer Radius
Ellipsoid Stäbchen Scheibe Zylinder	$(a^{2} + b^{2} + c^{2}) / 5$ $L^{2} / 12$ $(a^{2} + b^{2}) / 4$ $(a^{2} + b^{2} + L^{2} / 3) / 4$	a,b,c = Halbachsen L = Länge des Stäbchens a,b = Halbachsen L = Länge
Lineares Knäuel im θ-Zustand	$N^* l_{\mathrm{K}}^2/6$	N^* = Anzahl der Segmente $l_{\rm K}$ = Kuhnsche Länge
lineares Knäuel im Nicht-θ-Zustand	$\alpha^2 N^* l_{\mathbf{K}}^2 / 6$	α = Expansionskoeffizient

Tab. 4.10 : Trägheitsradien für verschiedene Modellmoleküle.

	Modell	R _g /nm		
Harte Kugel		4,5		
Hohlkugel	$(R_{\rm a} - R_{\rm i} = 0.5 \text{ nm})$ $(R_{\rm a} - R_{\rm i} = 1.0 \text{ nm})$	11,5 8,2		
$\begin{array}{l} \text{Zylinder} \\ (a = b) \end{array}$	(a = 2,5 nm) (a = 1,0 nm) (a = 0,5 nm)	12,3 76,3 305,1		
Knäuel ¹⁾	$(\alpha = 1) (\alpha = 2)$	16,9 23,9		

Tab. 4.11: Trägheitsradien für das Modellmolekül: $M_w = 5 \cdot 10^5$ g/mol, $\overline{v}_2 = 1$ cm³/g.

$$R_g \equiv \langle R_g^2 \rangle^{1/2}$$

Bei vorgegebenem M_w erhält man für unterschiedliche Strukturen deutliche Unterschiede im Trägheitradius. Ausnutzung zur erstem Abschätzung der Struktur von Makromolekülen

¹)Wir betrachten als Beispiel Polyvinylchlorid. Dort gilt: $N^* = 5 \cdot 10^5/62 \approx 80,65$ und $l_{\rm K} = 4,6$ Å.

Substanz	Molmasse M _w /(g/mol)	Spezifisches Volumen $\overline{\nu}_2/({ m cm}^3/{ m g})$	Theoretische Werte für Modell: Kugel	Experimentell bestimmte Werte für
Serumalbumin Catalase Dextran Polystyrol Kalbsthymus - DNA Bushy Stunt Virus Tabak Mosaik Virus	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0,75 0,73 0,60 0,50 0,56 0,74 0,75	2,1 3,1 4,5 6,4 10,6 11,3 17,5	$3,0^{1}, 4,0^{1}, 22,0^{2}, 32,0^{2}, 150,0^{2}, 12,0$

Tab. 4.12: Vergleich experimentell bestimmter Trägheitsradien mit berechneten Werten.

¹⁾Röntgenstreuung; ²⁾Lichtstreuung; Die Werte beziehen sich auf den Thetazustand.

Vergleich zwischen für Kugeln theoretisch berechneten R_g-Werten und experimentell gemessenen erlaubt Identifikation von kugelförmigen Strukturen:

Tab. 4.13: Wichtige Scalinggesetze der Form $\mathbf{R}_{\mathbf{g}} \sim M^{\nu}$.

Modell	Kugel	Hohlkugel	Ellipsoid	Stäbchen	Scheibe	Zylinder
ν	1/3	[1/3, 1/2]	[1/3, 1]	1	0.5	[1/2, 1]

Skalengesetze $R_g \varpropto M_w^{\nu}$

Einsatz der Skalengesetze zur Strukturaufklärung

Bei korrektem Strukturvorschlag ist

$\langle R^2 \rangle^{1/2}$	$^{2}/M^{1/2}$
$\left \frac{r}{g} \right _{z}$	$\int W W$

unabhängig von M_w

Glutamat	\Rightarrow	Stäbchen
PS/Cyclohexan	\Rightarrow	kollabiertes Knäuel
PS/Toluol	\Rightarrow	expandiertes Knäuel

Tab. 4.14:	Die Verhältnisse $\langle R^2 \rangle_z^{0,5} / M_w^{0,5}$, $\langle R^2 \rangle_z^{0,5} / M_w^{0,58}$ und $\langle R^2 \rangle_z^{0,5} / M_w$ als Funktion von M_w . Das
	Verhältnis $\langle R^2 \rangle_z^{0.5} / M_w^{0.5}$ sollte nicht von M_w abhängen, wenn es sich bei dem Teilchen um
	ein Knäuel im Thetazustand handelt. $\langle R^2 \rangle_z^{0.5} / M w^{0.58}$ ist konstant, wenn das Teilchen ein
	expandiertes Knäuel ist. $\langle R^2 \rangle_z^{0,5} / M_w$ ist konstant, wenn es sich um ein Stäbchen handelt.

		Knäuel im Thetazustand	Expandiertes Knäuel	Stäbchen			
M _w	$< R^2 >_{z}^{0.5}$	$< R^2 > c_z^{0,5}$	$< R^2 > c_z^{0,5}$	$< R^2 >_{z}^{0,5}$			
(g/mol)	nm	$M_{\mathbf{w}}^{0,5}$	$M_{w}^{0,58}$				
	Poly-γ-benzyl-L-	glutamat ¹⁾ gelöst in	Chloroform-Formar	mid bei T = $25 {}^{\circ}\text{C}$			
$1.3 \cdot 10^{5}$	26.3	0.072	0.028	2.02 · 10 ⁻⁴			
$2.1 \cdot 10^{5}$	40.8	0.089	0.033	$1.96 \cdot 10^{-4}$			
$2.6 \cdot 10^{5}$	52.8	0.104	0.038	$2.02 \cdot 10^{-4}$			
	Polystyrol ²⁾ gelö	st in Cyclohexan bei	T = 35 °C				
$7.2 \cdot 10^{5}$	23.8	0.028	0.0095	$3.31 \cdot 10^{-5}$			
$1.2 \cdot 10^{6}$	30.7	0.028	0.0091	$2.56 \cdot 10^{-5}$			
3.2 · 10 ⁶	51.8	0.029	0.0087	$1.62 \cdot 10^{-5}$			
	Polystyrol ²⁾ gelö	Polystyrol ²⁾ gelöst in Toluol bei T = 20 °C					
$1.2 \cdot 10^{5}$	12.8	0.037	0.015	1.06 · 10 ⁻⁴			
$4.4 \cdot 10^{5}$	29.0	0.044	0.015	6.59 · 10 ⁻⁵			
$7.2 \cdot 10^{5}$	39.8	0.047	0.016	5.53 · 10 ⁻⁵			
1.2 · 10 ⁶	50.6	0.046	0.015	$4.22 \cdot 10^{-5}$			
2.6 · 10 ⁶	80.7	0.050	0.015	3.10 · 10 ⁻⁵			

¹⁾ P. Doty et al., J. Am. Chem. Soc., 78, (1956) 947; ²⁾ E. Nordmeier, (1992).

Formfaktoren für homogene Kugeln und Polymer-Knäuel

Kugelformfaktor

.

$$P(q) = \left[\frac{3}{\left(qR_{K}\right)^{3}}\left(\sin qR_{K} - qR_{K}\cos qR_{K}\right)\right]^{2}$$

$$\mathbf{R}_{\mathbf{K}} = \mathbf{K}\mathbf{u}\mathbf{g}\mathbf{e}\mathbf{l}\mathbf{r}\mathbf{a}\mathbf{d}\mathbf{i}\mathbf{u}\mathbf{s}; \ \mathbf{q}_{\min} \mathbf{R}_{\mathbf{K}} = 4.49, 7.7, \dots$$

Kette im Theta-Zustand: Formfaktor eines kollabierten Knäuels

$$P(u) = \left(\frac{2}{u^4}\right) \left[u^2 - 1 + \exp(-u)\right]$$
$$u^2 = \mathbf{N} \cdot q^2 \mathbf{l}_K / 6$$

N = Anzahl der Segmente $l_K =$ Kuhnsche Länge

Formfaktoren für Makromolekül-Strukturen I

Starre geometrische Moleküle

Kugel (*Rayleigh* 1914) $P(q) = [(3/X^3)(\sin X - X\cos X)]^2$; X = R q; R = Radius (4.464a)

Hohlkugel (Kerker 1962)

$$P(q) = \frac{9\pi}{2} \left[\frac{J_{3/2}(X_{\rm a})}{X_{\rm a}^{3/2}} - \left(\frac{n_{\rm a} - n_{\rm i}}{n_{\rm a} - n_{\rm m}} \right) \left(\frac{R_{\rm i}}{R_{\rm a}} \right)^3 \frac{J_{3/2}(X_{\rm i})}{X_{\rm i}^{3/2}} \right]^2$$
(4.464b)

 $J_{3/2}(X) = [2/(\pi X^3)]^{1/2} (\sin X - X \cos X); X_a = R_a q; X_i = R_i q; R_a =$ äußerer Radius; $R_i =$ innerer Radius; n_i , n_a und $n_m =$ Brechungsindices von Hohlraum, Hülle und äußerem Medium.

Ellipsoid (Porod 1948)

$$P(q) = (9\pi/2) \int_{0}^{\pi/2} (J_{3/2}^{2} (V(X))/(V(X))^{3}) \cos X \, d X \qquad (4.464c)$$

$$V(X) = q(a^{2} \cos^{2} X + b^{2} \sin^{2} X)^{0,5}; a = \text{größere Halbachse}; b = \text{kleinere Halbachse}; c = b.$$

Zylinder (Mittelbach und Porod 1961)

$$P(q) = \int_{0}^{\pi/2} \frac{\pi}{X_{\rm L} \cos \alpha} \left[J_{1/2} \left(\frac{X_{\rm L} \cos \alpha}{2} \right) \cdot \frac{2 J_1(X_{\rm a} \sin \alpha)}{X_{\rm a} \sin \alpha} \right]^2 \sin \alpha \, d \, \alpha \qquad (4.464d)$$
$$J_{1/2}(X) , J_1(X) = \text{Besselfunktionen der Ordnung } 1/2 \text{ und } 1 \text{ ; } X_{\rm L} = Lq \text{ ; } X_{\rm a} = aq \text{ ; }$$
$$L = \text{Länge ; } a = \text{Radius.}$$

Formfaktoren für Makromolekül-Strukturen II

Lineare Knäuel

Theta-Zustand (*Debye* 1945)

$$P(q) = (2/u^4) [u^2 - 1 + \exp(-u^2)]$$

$$u^2 = N \cdot q^2 l_K^2/6; N = Anzahl der Segmente; l_K = Kuhnsche Länge:$$
(4.465a)

Wurmsche Kette (Sharp und Bloomfield 1968)

$$P(q) = (2/u^2) \left[\exp(-u) - 1 + u \right] + 4/(15L_r) + 7/(15L_r u) - \left[\frac{11}{15L_r} + \frac{7}{15L_r u} \right] \exp(-u)$$
(4.465b)

 $u = (16 \pi^2/3\lambda^2) L l_p \sin^2(\theta/2); L_r = L/(2 l_p); \lambda$ = Wellenlänge des Lichtes in der Lösung; L = Konturlänge; l_p = Persistenzlänge; θ = Streuwinkel; $L_r > 10$.

Expandierte Kette (Ptitsyn 1957)

Formfaktoren für Makromolekül-Strukturen III

Verzweigte Makromoleküle

Sterne mit gleichlangen Armen (Benoit 1953)

$$P(q) = \frac{2}{fX^2} \left[X - (1 - \exp(-X)) + \left(\frac{f-1}{2}\right) (1 - \exp(-X))^2 \right]$$

$$X = (f R_M^2 q^2) / (3f - 2)$$

$$f = \text{Anzahl der Arme}$$

$$R_M = \text{Trägheitsradius } (\alpha = 1)$$

$$(4.466a)$$

Kämme (Nordmeier 1990)

$$P(q) = \frac{2}{N^2 X^2} \left(N_0 \cdot X + \exp(-X \cdot N_0) - 1 \right) \cdot \left[1 + 2 \cdot \exp(-X) \sum_{i=1}^m \frac{f}{N_0} \left[\frac{\exp(-X \cdot n_i) - 1}{\exp(-X) - 1} \right] + \frac{1}{N_0} \left[\frac{\exp(-X \cdot n_i) - 1}{\exp(-X) - 1} \right] + \frac{1}{N_0} \left[\frac{\exp(-X \cdot n_i) - 1}{\exp(-X) - 1} \right]$$

+
$$\exp(-2 X) \sum_{i=1}^{m} \sum_{p=1}^{m} \frac{f_i f_p}{N_0^2} \left(\frac{\exp(-X \cdot n_i) - 1}{\exp(-X) - 1} \right) \left(\frac{\exp(-X \cdot n_p) - 1}{\exp(-X) - 1} \right)$$
 (4.466b)

 $X = (q^2 l_K^2)/6$; N = Totale Anzahl der Segmente ; $N_0 =$ Anzahl der Segmente auf der Hauptkette ; $n_i =$ Anzahl der Segmente der i-ten Seitenkette ; $f_i =$ Anzahl der Seitenketten vom Typ i.

Polykondensate von Typ A $\prec C$ (Burchard 1977)

$$P_{z}(q) = \left[1 + (\widetilde{K} < R^{2} >_{z} q^{2}/3)\right] / \left[1 + ((1 + \widetilde{K}) < R^{2} >_{z} q^{2}/6)\right]^{2}$$
(4.466c)

$$\widetilde{K} = (\beta^{2} + \gamma^{2}) \cdot \left[(\beta + \gamma) + (2\beta \gamma/(1 - \beta - \gamma))\right]^{-1}; \beta, \gamma = \text{Reaktionswahrscheinlichkeiten der funktionellen Gruppen B und C.}$$

Bestimmung von P(q) bei bekannter Molmassenverteilung w(M)

 $P(q)_{z} = \frac{1}{M_{w}} \int_{0}^{\infty} w(M) M P(q) dM \quad P(q)_{z} = \text{mit der Molmasse gewichtetes Gewichtsmittel}$ von P(q) aus der stat.Lichtstreuung

1) Berechnung für verschiedene Strukturen

2) Auftragung von 1/P(q) gegen q² $\langle R_g^2 \rangle$

3) Vergleich mit Experiment

